Does proximity to residential traffic influence blood pressure in McGill adolescents?

¹Department of Family Medicine, McGill University; ²Faculty of Pharmacy, Université de Montréal; ³CHU Sainte-Justine Children's Hospital Research Centre; ⁴School of Public Health, Université de Montréal; ⁵Epidemiology and Biostatistics Unit, INRS-Institut Armand Frappier

Background

- Elevated blood pressure (BP) puts children and adolescents at risk for:
 - developing cardiovascular pathologies, notably left ventricular hypertrophy, and
 - developing hypertension and cardiovascular disease later in life
- Residential traffic may impact BP; plausible mechanisms include:
 - exposure to **transport noise** \rightarrow reduced sleep quality and adverse stress response \rightarrow elevated BP
 - exposure to air particulate matter \rightarrow inflammatory response in the lungs \rightarrow release of chemical mediators \rightarrow altered autonomic nervous system control of cardiac rhythm \rightarrow elevated BP
- To date, the association between traffic noise/air pollution and BP has only been studied in children (<13 years old) and adults (>18 years old), but not in adolescents

Objectives

<u>Primary</u>: To examine the relationship between residential traffic and blood pressure among adolescents

<u>Secondary</u>: To examine the role of material and social deprivation (potential modifier or confounder)

Participants & Setting

Purposive sample of 10 public secondary schools in or near Montreal, Canada

- English, French
- Urban, suburban, rural
- SES (low, medium, high)

MCGILL FAMILY MEDICINE GRADUATE PROGRAMS | Advancing academic excellence in family medicine and primary health care

Erica Marrone¹ BSc; Cristina Longo^{2,3} PhD; Jennifer O'Loughlin⁴ PhD; and Tracie Barnett^{1,3,5} PhD

Methods

Design: Cross-sectional analysis in 2004 when students were in grade 11 (mean age: 17.0 years)

Exposures:

- Area-level traffic indicators within a 750-metre radius from residential postal code (buffer zone)
- Air quality data (N₂O, O₃, PM_{2.5})

Outcome: Systolic BP (SBP) and diastolic BP (DBP) measured by trained technicians using a Dinamap® oscillometric device

Potential confounders: Sex, BMI, deprivation, ethnicity

Analysis: Descriptive statistics; assess how deprivation and other characteristics modify association between traffic and BP; multivariate regression models adjusting for confounders; GEE to account for school clustering effects

Data sources:

- **NDIT:** a longitudinal study of the natural course of nicotine dependence in youth where self-report questionnaires were completed in class every 3 months from grade 7 to
- **MEGAPHONE:** a Montreal-based geographic information system
- 3. CANUE: Canadian Urban Environmental Health Research Consortium; a national database containing information about air pollution, socioeconomic conditions & more

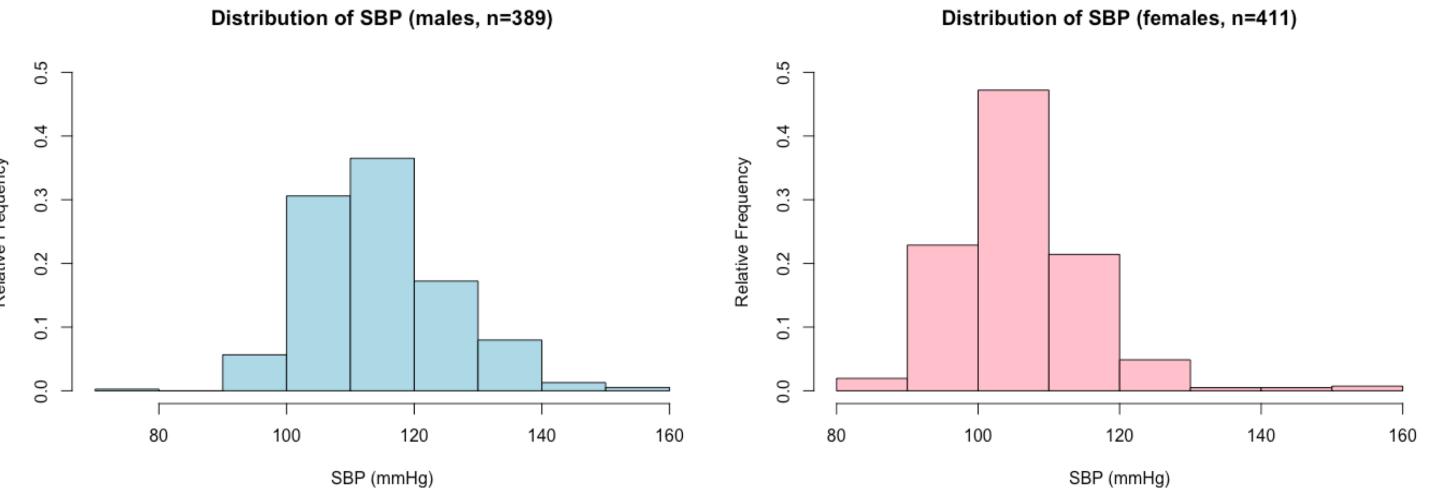
	NDIT	N	IEGAPHONE		
•	SBP and DBP Body Mass Index (BMI) Age	•	Length of roads in buffer zone with and	•	Materi depriv Census Annua
•	Sex Physical activity		without heavy traffic	•	of nitro Annua of grou
•	Postal code Demographic information	•	Density of private dwellings within buffer zone	•	code 3-year concer particu code

CANUE

rial and social vation indices from 2001

al average concentration rous oxide at postal code al average concentration ound level ozone at postal

r annual average entration of fine culates (PM_{2.5}) at postal


Preliminary Results

Distribution of SBP measures¹ (%)

	Males (n=389)	Females (n=411)	Total (n=800)			
Normal BP (<120mmHg)	35.0	48.2	83.2			
Elevated BP (120-129mmHg)	8.5	2.4	10.9			
Stage I HTN (130-139mmHg)	4.0	0.4	4.4			
Stage II HTN (≥140mmHg)	0.9	0.6	1.5			

¹Categories are according to the 2017 *Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents* by the American Academy of Pediatrics. These categories specific for adolescents \geq 13 years old.

- estimated prevalence in the literature 3.5%
- compared to females

Next Steps

- Create relevant indices of exposures
- Complete analyses

Department of Family Medicine

Département de médecine de famille

Prevalence of hypertension (HTN) in this cohort is roughly 6% which is significantly higher than the

Stage I HTN is significantly more prevalent in males

Obtain CANUE data and link to NDIT data via postal code Analyze distribution of environmental exposures

